sklearn.utils.validation.check_is_fitted(estimator, attributes, msg=None, all_or_any=<built-in function all>)
[source]
Perform is_fitted validation for estimator.
Checks if the estimator is fitted by verifying the presence of “all_or_any” of the passed attributes and raises a NotFittedError with the given message.
Parameters: |
estimator : estimator instance. estimator instance for which the check is performed. attributes : attribute name(s) given as string or a list/tuple of strings
msg : string The default error message is, “This %(name)s instance is not fitted yet. Call ‘fit’ with appropriate arguments before using this method.” For custom messages if “%(name)s” is present in the message string, it is substituted for the estimator name. Eg. : “Estimator, %(name)s, must be fitted before sparsifying”. all_or_any : callable, {all, any}, default all Specify whether all or any of the given attributes must exist. |
---|---|
Returns: |
None : |
Raises: |
NotFittedError : If the attributes are not found. |
© 2007–2017 The scikit-learn developers
Licensed under the 3-clause BSD License.
http://scikit-learn.org/stable/modules/generated/sklearn.utils.validation.check_is_fitted.html