statsmodels
is a Python module that provides classes and functions for the estimation of many different statistical models, as well as for conducting statistical tests, and statistical data exploration. An extensive list of result statistics are available for each estimator. The results are tested against existing statistical packages to ensure that they are correct. The package is released under the open source Modified BSD (3-clause) license. The online documentation is hosted at statsmodels.org.
Since version 0.5.0
of statsmodels
, you can use R-style formulas together with pandas
data frames to fit your models. Here is a simple example using ordinary least squares:
In [1]: import numpy as np In [2]: import statsmodels.api as sm In [3]: import statsmodels.formula.api as smf # Load data In [4]: dat = sm.datasets.get_rdataset("Guerry", "HistData").data # Fit regression model (using the natural log of one of the regressors) In [5]: results = smf.ols('Lottery ~ Literacy + np.log(Pop1831)', data=dat).fit() # Inspect the results In [6]: print(results.summary()) OLS Regression Results ============================================================================== Dep. Variable: Lottery R-squared: 0.348 Model: OLS Adj. R-squared: 0.333 Method: Least Squares F-statistic: 22.20 Date: Tue, 28 Feb 2017 Prob (F-statistic): 1.90e-08 Time: 21:38:05 Log-Likelihood: -379.82 No. Observations: 86 AIC: 765.6 Df Residuals: 83 BIC: 773.0 Df Model: 2 Covariance Type: nonrobust =================================================================================== coef std err t P>|t| [0.025 0.975] ----------------------------------------------------------------------------------- Intercept 246.4341 35.233 6.995 0.000 176.358 316.510 Literacy -0.4889 0.128 -3.832 0.000 -0.743 -0.235 np.log(Pop1831) -31.3114 5.977 -5.239 0.000 -43.199 -19.424 ============================================================================== Omnibus: 3.713 Durbin-Watson: 2.019 Prob(Omnibus): 0.156 Jarque-Bera (JB): 3.394 Skew: -0.487 Prob(JB): 0.183 Kurtosis: 3.003 Cond. No. 702. ============================================================================== Warnings: [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
You can also use numpy
arrays instead of formulas:
In [7]: import numpy as np In [8]: import statsmodels.api as sm # Generate artificial data (2 regressors + constant) In [9]: nobs = 100 In [10]: X = np.random.random((nobs, 2)) In [11]: X = sm.add_constant(X) In [12]: beta = [1, .1, .5] In [13]: e = np.random.random(nobs) In [14]: y = np.dot(X, beta) + e # Fit regression model In [15]: results = sm.OLS(y, X).fit() # Inspect the results In [16]: print(results.summary()) OLS Regression Results ============================================================================== Dep. Variable: y R-squared: 0.260 Model: OLS Adj. R-squared: 0.245 Method: Least Squares F-statistic: 17.06 Date: Tue, 28 Feb 2017 Prob (F-statistic): 4.49e-07 Time: 21:38:05 Log-Likelihood: -23.039 No. Observations: 100 AIC: 52.08 Df Residuals: 97 BIC: 59.89 Df Model: 2 Covariance Type: nonrobust ============================================================================== coef std err t P>|t| [0.025 0.975] ------------------------------------------------------------------------------ const 1.3622 0.088 15.521 0.000 1.188 1.536 x1 0.2220 0.112 1.973 0.051 -0.001 0.445 x2 0.6277 0.112 5.585 0.000 0.405 0.851 ============================================================================== Omnibus: 38.171 Durbin-Watson: 1.957 Prob(Omnibus): 0.000 Jarque-Bera (JB): 6.373 Skew: 0.079 Prob(JB): 0.0413 Kurtosis: 1.773 Cond. No. 5.71 ============================================================================== Warnings: [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
Have a look at dir(results)
to see available results. Attributes are described in results.__doc__
and results methods have their own docstrings.
When using statsmodels in scientific publication, please consider using the following citation:
Seabold, Skipper, and Josef Perktold. “Statsmodels: Econometric and statistical modeling with python.” Proceedings of the 9th Python in Science Conference. 2010.Bibtex entry:
@inproceedings{seabold2010statsmodels, title={Statsmodels: Econometric and statistical modeling with python}, author={Seabold, Skipper and Perktold, Josef}, booktitle={9th Python in Science Conference}, year={2010}, }
© 2009–2012 Statsmodels Developers
© 2006–2008 Scipy Developers
© 2006 Jonathan E. Taylor
Licensed under the 3-clause BSD License.
http://www.statsmodels.org/stable/index.html