#include <array_ops.h>
Pads a tensor with mirrored values.
This operation pads a input
with mirrored values according to the paddings
you specify. paddings
is an integer tensor with shape [n, 2]
, where n is the rank of input
. For each dimension D of input
, paddings[D, 0]
indicates how many values to add before the contents of input
in that dimension, and paddings[D, 1]
indicates how many values to add after the contents of input
in that dimension. Both paddings[D, 0]
and paddings[D, 1]
must be no greater than input.dim_size(D)
(or input.dim_size(D) - 1
) if copy_border
is true (if false, respectively).
The padded size of each dimension D of the output is:
paddings(D, 0) + input.dim_size(D) + paddings(D, 1)
For example:
``` 't' is [[1, 2, 3], [4, 5, 6]].
'paddings' is [[1, 1]], [2, 2]].
'mode' is SYMMETRIC.
rank of 't' is 2.
pad(t, paddings) ==> [[2, 1, 1, 2, 3, 3, 2] [2, 1, 1, 2, 3, 3, 2] [5, 4, 4, 5, 6, 6, 5] [5, 4, 4, 5, 6, 6, 5]] ```
Arguments:
input
.REFLECT
or SYMMETRIC
. In reflect mode the padded regions do not include the borders, while in symmetric mode the padded regions do include the borders. For example, if input
is [1, 2, 3]
and paddings
is [0, 2]
, then the output is [1, 2, 3, 2, 1]
in reflect mode, and it is [1, 2, 3, 3, 2]
in symmetric mode.Returns:
Output
: The padded tensor. Constructors and Destructors | |
---|---|
MirrorPad(const ::tensorflow::Scope & scope, ::tensorflow::Input input, ::tensorflow::Input paddings, StringPiece mode) |
Public attributes | |
---|---|
output |
Public functions | |
---|---|
node() const | ::tensorflow::Node * |
operator::tensorflow::Input() const | |
operator::tensorflow::Output() const |
::tensorflow::Output output
MirrorPad( const ::tensorflow::Scope & scope, ::tensorflow::Input input, ::tensorflow::Input paddings, StringPiece mode )
::tensorflow::Node * node() const
operator::tensorflow::Input() const
operator::tensorflow::Output() const
© 2017 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/api_docs/cc/class/tensorflow/ops/mirror-pad.html