Note: Functions takingTensor
arguments can also take anything accepted bytf.convert_to_tensor
.
TensorFlow provides several operations that you can use to cast tensor data types in your graph.
tf.string_to_number
tf.to_double
tf.to_float
tf.to_bfloat16
tf.to_int32
tf.to_int64
tf.cast
tf.bitcast
tf.saturate_cast
TensorFlow provides several operations that you can use to determine the shape of a tensor and change the shape of a tensor.
tf.broadcast_dynamic_shape
tf.broadcast_static_shape
tf.shape
tf.shape_n
tf.size
tf.rank
tf.reshape
tf.squeeze
tf.expand_dims
tf.meshgrid
TensorFlow provides several operations to slice or extract parts of a tensor, or join multiple tensors together.
tf.slice
tf.strided_slice
tf.split
tf.tile
tf.pad
tf.concat
tf.stack
tf.parallel_stack
tf.unstack
tf.reverse_sequence
tf.reverse
tf.reverse_v2
tf.transpose
tf.extract_image_patches
tf.space_to_batch_nd
tf.space_to_batch
tf.required_space_to_batch_paddings
tf.batch_to_space_nd
tf.batch_to_space
tf.space_to_depth
tf.depth_to_space
tf.gather
tf.gather_nd
tf.unique_with_counts
tf.scatter_nd
tf.dynamic_partition
tf.dynamic_stitch
tf.boolean_mask
tf.one_hot
tf.sequence_mask
tf.dequantize
tf.quantize_v2
tf.quantized_concat
tf.setdiff1d
Operations used to help train for better quantization accuracy.
tf.fake_quant_with_min_max_args
tf.fake_quant_with_min_max_args_gradient
tf.fake_quant_with_min_max_vars
tf.fake_quant_with_min_max_vars_gradient
tf.fake_quant_with_min_max_vars_per_channel
tf.fake_quant_with_min_max_vars_per_channel_gradient
© 2017 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/api_guides/python/array_ops