Bijector Ops.
An API for invertible, differentiable transformations of random variables.
Differentiable, bijective transformations of continuous random variables alter the calculations made in the cumulative/probability distribution functions and sample function. This module provides a standard interface for making these manipulations.
For more details and examples, see the Bijector
docstring.
To apply a Bijector
, use distributions.TransformedDistribution
.
tf.contrib.distributions.bijectors.Affine
tf.contrib.distributions.bijectors.AffineLinearOperator
tf.contrib.distributions.bijectors.Bijector
tf.contrib.distributions.bijectors.Chain
tf.contrib.distributions.bijectors.CholeskyOuterProduct
tf.contrib.distributions.bijectors.Exp
tf.contrib.distributions.bijectors.Identity
tf.contrib.distributions.bijectors.Inline
tf.contrib.distributions.bijectors.Invert
tf.contrib.distributions.bijectors.PowerTransform
tf.contrib.distributions.bijectors.SigmoidCentered
tf.contrib.distributions.bijectors.SoftmaxCentered
tf.contrib.distributions.bijectors.Softplus
© 2017 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/api_guides/python/contrib.distributions.bijectors