A MetaGraph
contains both a TensorFlow GraphDef as well as associated metadata necessary for running computation in a graph when crossing a process boundary. It can also be used for long term storage of graphs. The MetaGraph contains the information required to continue training, perform evaluation, or run inference on a previously trained graph.
The APIs for exporting and importing the complete model are in the tf.train.Saver
class: tf.train.export_meta_graph
and tf.train.import_meta_graph
.
The information contained in a MetaGraph is expressed as a MetaGraphDef
protocol buffer. It contains the following fields:
MetaInfoDef
for meta information, such as version and other user information.GraphDef
for describing the graph.SaverDef
for the saver.CollectionDef
map that further describes additional components of the model, such as Variables
, tf.train.QueueRunner
, etc. In order for a Python object to be serialized to and from MetaGraphDef
, the Python class must implement to_proto()
and from_proto()
methods, and register them with the system using register_proto_function
.For example,
def to_proto(self, export_scope=None): """Converts a `Variable` to a `VariableDef` protocol buffer. Args: export_scope: Optional `string`. Name scope to remove. Returns: A `VariableDef` protocol buffer, or `None` if the `Variable` is not in the specified name scope. """ if (export_scope is None or self._variable.name.startswith(export_scope)): var_def = variable_pb2.VariableDef() var_def.variable_name = ops.strip_name_scope( self._variable.name, export_scope) var_def.initializer_name = ops.strip_name_scope( self.initializer.name, export_scope) var_def.snapshot_name = ops.strip_name_scope( self._snapshot.name, export_scope) if self._save_slice_info: var_def.save_slice_info_def.MergeFrom(self._save_slice_info.to_proto( export_scope=export_scope)) return var_def else: return None @staticmethod def from_proto(variable_def, import_scope=None): """Returns a `Variable` object created from `variable_def`.""" return Variable(variable_def=variable_def, import_scope=import_scope) ops.register_proto_function(ops.GraphKeys.GLOBAL_VARIABLES, proto_type=variable_pb2.VariableDef, to_proto=Variable.to_proto, from_proto=Variable.from_proto)
The API for exporting a running model as a MetaGraph is export_meta_graph()
.
def export_meta_graph(filename=None, collection_list=None, as_text=False): """Writes `MetaGraphDef` to save_path/filename. Args: filename: Optional meta_graph filename including the path. collection_list: List of string keys to collect. as_text: If `True`, writes the meta_graph as an ASCII proto. Returns: A `MetaGraphDef` proto. """
A collection
can contain any Python objects that users would like to be able to uniquely identify and easily retrieve. These objects can be special operations in the graph, such as train_op
, or hyper parameters, such as "learning rate". Users can specify the list of collections they would like to export. If no collection_list
is specified, all collections in the model will be exported.
The API returns a serialized protocol buffer. If filename
is specified, the protocol buffer will also be written to a file.
Here are some of the typical usage models:
# Build the model ... with tf.Session() as sess: # Use the model ... # Export the model to /tmp/my-model.meta. meta_graph_def = tf.train.export_meta_graph(filename='/tmp/my-model.meta')
meta_graph_def = tf.train.export_meta_graph( filename='/tmp/my-model.meta', collection_list=["input_tensor", "output_tensor"])
The MetaGraph is also automatically exported via the save()
API in tf.train.Saver
.
The API for importing a MetaGraph file into a graph is import_meta_graph()
.
Here are some of the typical usage models:
... # Create a saver. saver = tf.train.Saver(...variables...) # Remember the training_op we want to run by adding it to a collection. tf.add_to_collection('train_op', train_op) sess = tf.Session() for step in xrange(1000000): sess.run(train_op) if step % 1000 == 0: # Saves checkpoint, which by default also exports a meta_graph # named 'my-model-global_step.meta'. saver.save(sess, 'my-model', global_step=step)
Later we can continue training from this saved meta_graph
without building the model from scratch.
with tf.Session() as sess: new_saver = tf.train.import_meta_graph('my-save-dir/my-model-10000.meta') new_saver.restore(sess, 'my-save-dir/my-model-10000') # tf.get_collection() returns a list. In this example we only want the # first one. train_op = tf.get_collection('train_op')[0] for step in xrange(1000000): sess.run(train_op)
For example, we can first build an inference graph, export it as a meta graph:
# Creates an inference graph. # Hidden 1 images = tf.constant(1.2, tf.float32, shape=[100, 28]) with tf.name_scope("hidden1"): weights = tf.Variable( tf.truncated_normal([28, 128], stddev=1.0 / math.sqrt(float(28))), name="weights") biases = tf.Variable(tf.zeros([128]), name="biases") hidden1 = tf.nn.relu(tf.matmul(images, weights) + biases) # Hidden 2 with tf.name_scope("hidden2"): weights = tf.Variable( tf.truncated_normal([128, 32], stddev=1.0 / math.sqrt(float(128))), name="weights") biases = tf.Variable(tf.zeros([32]), name="biases") hidden2 = tf.nn.relu(tf.matmul(hidden1, weights) + biases) # Linear with tf.name_scope("softmax_linear"): weights = tf.Variable( tf.truncated_normal([32, 10], stddev=1.0 / math.sqrt(float(32))), name="weights") biases = tf.Variable(tf.zeros([10]), name="biases") logits = tf.matmul(hidden2, weights) + biases tf.add_to_collection("logits", logits) init_all_op = tf.global_variables_initializer() with tf.Session() as sess: # Initializes all the variables. sess.run(init_all_op) # Runs to logit. sess.run(logits) # Creates a saver. saver0 = tf.train.Saver() saver0.save(sess, 'my-save-dir/my-model-10000') # Generates MetaGraphDef. saver0.export_meta_graph('my-save-dir/my-model-10000.meta')
Then later import it and extend it to a training graph.
with tf.Session() as sess: new_saver = tf.train.import_meta_graph('my-save-dir/my-model-10000.meta') new_saver.restore(sess, 'my-save-dir/my-model-10000') # Addes loss and train. labels = tf.constant(0, tf.int32, shape=[100], name="labels") batch_size = tf.size(labels) labels = tf.expand_dims(labels, 1) indices = tf.expand_dims(tf.range(0, batch_size), 1) concated = tf.concat([indices, labels], 1) onehot_labels = tf.sparse_to_dense( concated, tf.stack([batch_size, 10]), 1.0, 0.0) logits = tf.get_collection("logits")[0] cross_entropy = tf.nn.softmax_cross_entropy_with_logits( labels=onehot_labels, logits=logits, name="xentropy") loss = tf.reduce_mean(cross_entropy, name="xentropy_mean") tf.summary.scalar('loss', loss) # Creates the gradient descent optimizer with the given learning rate. optimizer = tf.train.GradientDescentOptimizer(0.01) # Runs train_op. train_op = optimizer.minimize(loss) sess.run(train_op)
Sometimes an exported meta graph is from a training environment that the importer doesn't have. For example, the model might have been trained on GPUs, or in a distributed environment with replicas. When importing such models, it's useful to be able to clear the device settings in the graph so that we can run it on locally available devices. This can be achieved by calling import_meta_graph
with the clear_devices
option set to True
.
with tf.Session() as sess: new_saver = tf.train.import_meta_graph('my-save-dir/my-model-10000.meta', clear_devices=True) new_saver.restore(sess, 'my-save-dir/my-model-10000') ...
Sometimes you might want to run export_meta_graph
and import_meta_graph
in codelab using the default graph. In that case, you need to reset the default graph by calling tf.reset_default_graph()
first before running import.
meta_graph_def = tf.train.export_meta_graph() ... tf.reset_default_graph() ... tf.train.import_meta_graph(meta_graph_def) ...
filename = ".".join([tf.train.latest_checkpoint(train_dir), "meta"]) tf.train.import_meta_graph(filename) hparams = tf.get_collection("hparams")
© 2017 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/api_guides/python/meta_graph