RNNCell
Inherits From: Layer
tf.contrib.rnn.RNNCell
tf.nn.rnn_cell.RNNCell
Defined in tensorflow/python/ops/rnn_cell_impl.py.
See the guides: RNN and Cells (contrib) > Base interface for all RNN Cells, Seq2seq Library (contrib)
Abstract object representing an RNN cell.
Every RNNCell must have the properties below and implement call with the signature (output, next_state) = call(input, state). The optional third input argument, scope, is allowed for backwards compatibility purposes; but should be left off for new subclasses.
This definition of cell differs from the definition used in the literature. In the literature, 'cell' refers to an object with a single scalar output. This definition refers to a horizontal array of such units.
An RNN cell, in the most abstract setting, is anything that has a state and performs some operation that takes a matrix of inputs. This operation results in an output matrix with self.output_size columns. If self.state_size is an integer, this operation also results in a new state matrix with self.state_size columns. If self.state_size is a (possibly nested tuple of) TensorShape object(s), then it should return a matching structure of Tensors having shape [batch_size].concatenate(s) for each s in self.batch_size.
activity_regularizerOptional regularizer function for the output of this layer.
dtypegraphinputRetrieves the input tensor(s) of a layer.
Only applicable if the layer has exactly one input, i.e. if it is connected to one incoming layer.
Input tensor or list of input tensors.
AttributeError: if the layer is connected to more than one incoming layers.RuntimeError: If called in Eager mode.AttributeError: If no inbound nodes are found.input_shapeRetrieves the input shape(s) of a layer.
Only applicable if the layer has exactly one input, i.e. if it is connected to one incoming layer, or if all inputs have the same shape.
Input shape, as an integer shape tuple (or list of shape tuples, one tuple per input tensor).
AttributeError: if the layer has no defined input_shape.RuntimeError: if called in Eager mode.lossesnamenon_trainable_variablesnon_trainable_weightsoutputRetrieves the output tensor(s) of a layer.
Only applicable if the layer has exactly one output, i.e. if it is connected to one incoming layer.
Output tensor or list of output tensors.
AttributeError: if the layer is connected to more than one incoming layers.RuntimeError: if called in Eager mode.output_shapeRetrieves the output shape(s) of a layer.
Only applicable if the layer has one output, or if all outputs have the same shape.
Output shape, as an integer shape tuple (or list of shape tuples, one tuple per output tensor).
AttributeError: if the layer has no defined output shape.RuntimeError: if called in Eager mode.output_sizeInteger or TensorShape: size of outputs produced by this cell.
scope_namestate_sizesize(s) of state(s) used by this cell.
It can be represented by an Integer, a TensorShape or a tuple of Integers or TensorShapes.
trainable_variablestrainable_weightsupdatesvariablesReturns the list of all layer variables/weights.
A list of variables.
weightsReturns the list of all layer variables/weights.
A list of variables.
__init____init__(
trainable=True,
name=None,
dtype=None,
activity_regularizer=None,
**kwargs
)
__call____call__(
inputs,
state,
scope=None
)
Run this RNN cell on inputs, starting from the given state.
inputs: 2-D tensor with shape [batch_size x input_size].state: if self.state_size is an integer, this should be a 2-D Tensor with shape [batch_size x self.state_size]. Otherwise, if self.state_size is a tuple of integers, this should be a tuple with shapes [batch_size x s] for s in self.state_size.scope: VariableScope for the created subgraph; defaults to class name.A pair containing:
2-D tensor with shape [batch_size x self.output_size].2-D tensor, or a tuple of tensors matching the arity and shapes of state.__deepcopy____deepcopy__(memo)
add_lossadd_loss(
losses,
inputs=None
)
Add loss tensor(s), potentially dependent on layer inputs.
Some losses (for instance, activity regularization losses) may be dependent on the inputs passed when calling a layer. Hence, when reusing a same layer on different inputs a and b, some entries in layer.losses may be dependent on a and some on b. This method automatically keeps track of dependencies.
The get_losses_for method allows to retrieve the losses relevant to a specific set of inputs.
losses: Loss tensor, or list/tuple of tensors.inputs: Optional input tensor(s) that the loss(es) depend on. Must match the inputs argument passed to the __call__ method at the time the losses are created. If None is passed, the losses are assumed to be unconditional, and will apply across all dataflows of the layer (e.g. weight regularization losses).RuntimeError: If called in Eager mode.add_updateadd_update(
updates,
inputs=None
)
Add update op(s), potentially dependent on layer inputs.
Weight updates (for instance, the updates of the moving mean and variance in a BatchNormalization layer) may be dependent on the inputs passed when calling a layer. Hence, when reusing a same layer on different inputs a and b, some entries in layer.updates may be dependent on a and some on b. This method automatically keeps track of dependencies.
The get_updates_for method allows to retrieve the updates relevant to a specific set of inputs.
This call is ignored in Eager mode.
updates: Update op, or list/tuple of update ops.inputs: Optional input tensor(s) that the update(s) depend on. Must match the inputs argument passed to the __call__ method at the time the updates are created. If None is passed, the updates are assumed to be unconditional, and will apply across all dataflows of the layer.add_variableadd_variable(
name,
shape,
dtype=None,
initializer=None,
regularizer=None,
trainable=True,
constraint=None
)
Adds a new variable to the layer, or gets an existing one; returns it.
name: variable name.shape: variable shape.dtype: The type of the variable. Defaults to self.dtype or float32.initializer: initializer instance (callable).regularizer: regularizer instance (callable).trainable: whether the variable should be part of the layer's "trainable_variables" (e.g. variables, biases) or "non_trainable_variables" (e.g. BatchNorm mean, stddev).constraint: constraint instance (callable).The created variable.
RuntimeError: If called in Eager mode with regularizers.applyapply(
inputs,
*args,
**kwargs
)
Apply the layer on a input.
This simply wraps self.__call__.
inputs: Input tensor(s).*args: additional positional arguments to be passed to self.call.**kwargs: additional keyword arguments to be passed to self.call.Output tensor(s).
buildbuild(_)
callcall(
inputs,
**kwargs
)
The logic of the layer lives here.
inputs: input tensor(s).**kwargs: additional keyword arguments.Output tensor(s).
count_paramscount_params()
Count the total number of scalars composing the weights.
An integer count.
ValueError: if the layer isn't yet built (in which case its weights aren't yet defined).get_input_atget_input_at(node_index)
Retrieves the input tensor(s) of a layer at a given node.
node_index: Integer, index of the node from which to retrieve the attribute. E.g. node_index=0 will correspond to the first time the layer was called.A tensor (or list of tensors if the layer has multiple inputs).
RuntimeError: If called in Eager mode.get_input_shape_atget_input_shape_at(node_index)
Retrieves the input shape(s) of a layer at a given node.
node_index: Integer, index of the node from which to retrieve the attribute. E.g. node_index=0 will correspond to the first time the layer was called.A shape tuple (or list of shape tuples if the layer has multiple inputs).
RuntimeError: If called in Eager mode.get_losses_forget_losses_for(inputs)
Retrieves losses relevant to a specific set of inputs.
inputs: Input tensor or list/tuple of input tensors. Must match the inputs argument passed to the __call__ method at the time the losses were created. If you pass inputs=None, unconditional losses are returned, such as weight regularization losses.List of loss tensors of the layer that depend on inputs.
RuntimeError: If called in Eager mode.get_output_atget_output_at(node_index)
Retrieves the output tensor(s) of a layer at a given node.
node_index: Integer, index of the node from which to retrieve the attribute. E.g. node_index=0 will correspond to the first time the layer was called.A tensor (or list of tensors if the layer has multiple outputs).
RuntimeError: If called in Eager mode.get_output_shape_atget_output_shape_at(node_index)
Retrieves the output shape(s) of a layer at a given node.
node_index: Integer, index of the node from which to retrieve the attribute. E.g. node_index=0 will correspond to the first time the layer was called.A shape tuple (or list of shape tuples if the layer has multiple outputs).
RuntimeError: If called in Eager mode.get_updates_forget_updates_for(inputs)
Retrieves updates relevant to a specific set of inputs.
inputs: Input tensor or list/tuple of input tensors. Must match the inputs argument passed to the __call__ method at the time the updates were created. If you pass inputs=None, unconditional updates are returned.List of update ops of the layer that depend on inputs.
RuntimeError: If called in Eager mode.zero_statezero_state(
batch_size,
dtype
)
Return zero-filled state tensor(s).
batch_size: int, float, or unit Tensor representing the batch size.dtype: the data type to use for the state.If state_size is an int or TensorShape, then the return value is a N-D tensor of shape [batch_size x state_size] filled with zeros.
If state_size is a nested list or tuple, then the return value is a nested list or tuple (of the same structure) of 2-D tensors with the shapes [batch_size x s] for each s in state_size.
© 2017 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/api_docs/python/tf/contrib/rnn/RNNCell