W3cubDocs

/TensorFlow Python

tf.keras.optimizers.SGD

Class SGD

Inherits From: Optimizer

Defined in tensorflow/python/keras/_impl/keras/optimizers.py.

Stochastic gradient descent optimizer.

Includes support for momentum, learning rate decay, and Nesterov momentum.

Arguments:

  • lr: float >= 0. Learning rate.
  • momentum: float >= 0. Parameter updates momentum.
  • decay: float >= 0. Learning rate decay over each update.
  • nesterov: boolean. Whether to apply Nesterov momentum.

Methods

__init__

__init__(
    lr=0.01,
    momentum=0.0,
    decay=0.0,
    nesterov=False,
    **kwargs
)

from_config

from_config(
    cls,
    config
)

get_config

get_config()

get_gradients

get_gradients(
    loss,
    params
)

get_updates

get_updates(
    loss,
    params
)

get_weights

get_weights()

Returns the current value of the weights of the optimizer.

Returns:

A list of numpy arrays.

set_weights

set_weights(weights)

Sets the weights of the optimizer, from Numpy arrays.

Should only be called after computing the gradients (otherwise the optimizer has no weights).

Arguments:

  • weights: a list of Numpy arrays. The number of arrays and their shape must match number of the dimensions of the weights of the optimizer (i.e. it should match the output of get_weights).

Raises:

  • ValueError: in case of incompatible weight shapes.

© 2017 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/api_docs/python/tf/keras/optimizers/SGD